If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-56x+132=0
a = 4; b = -56; c = +132;
Δ = b2-4ac
Δ = -562-4·4·132
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-32}{2*4}=\frac{24}{8} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+32}{2*4}=\frac{88}{8} =11 $
| 7=10-n | | 12/7+1/9t=2 | | -0.6p=14.4 | | 42+x=-2 | | 2x=2/5=31/2 | | 3n/4-7/20=2n/5 | | 9v-13=32 | | -2=n/6 | | 1.7x-1.3=-1.3 | | 2x+2/5=31/2 | | X-10x+6=42 | | 43=s/6+40 | | -18x+58=-18x+64 | | -2y+y-2=4 | | .04x=1080 | | 2/7m-13=23 | | 4x=36+10x | | 23-7(x+3)=5x+10 | | 8x-2=2x-14 | | 3t-6/5=2-(-5) | | -8+7k=7k-7 | | 43=10q-27 | | 18a=11a | | 5a-7a-5=5 | | -9=n-16 | | 0.7x+2.9=0.1 | | 500=0.7x-(750+0.25x) | | M^3+3m^2-4m+12=0 | | 8+3/5z=11 | | 11+7n=n+6+7n | | 3x+12-4x=32 | | 3x^2-30x=-36 |